Cartilage oligomeric matrix protein (COMP) and collagen IX are sensitive markers for the differentiation state of articular primary chondrocytes.

نویسندگان

  • F Zaucke
  • R Dinser
  • P Maurer
  • M Paulsson
چکیده

Primary chondrocytes dedifferentiate in serial monolayer with respect to their morphological and biosynthetic phenotype. They change from a round to a flattened fibroblast-like shape, and collagen I is secreted instead of the cartilage-specific collagen II. We analysed in detail the time course of dedifferentiation of mature bovine articular chondrocytes in monolayer for up to 32 weeks. Assessment of RNA expression by reverse transcription-PCR led to the identification of two novel phenotypical markers, the cartilage oligomeric matrix protein (COMP) and collagen IX, which are down-regulated faster than the widely accepted marker, collagen II. The different kinetics of COMP and collagen expression suggest differential regulation at the level of transcription. Immunostaining and metabolic labelling experiments confirmed the switch in the collagen expression pattern and the rapid down-regulation of de novo synthesis of COMP and collagen IX. Culture of chondrocytes in a three-dimensional matrix is known to stabilize the chondrocytic phenotype. We maintained cells for up to 28 weeks in an alginate bead system, which prevented dedifferentiation and led to a stabilization of collagen and COMP expression. Immunohistochemical analysis of the alginate beads revealed a similar distribution of matrix proteins to that found in vivo. Chondrocytes were transferred after a variable length of monolayer culture into the alginate matrix and the potential for redifferentiation was investigated. The re-expression of COMP and collagen IX was differentially regulated. The expression of COMP was re-induced within days after transfer into the three-dimensional matrix, while the expression of collagen IX was irreversibly down-regulated. In summary, these results demonstrate that the potential for redifferentiation decreases with increasing length of monolayer culture and show that the alginate bead system represents an attractive in vitro model to study the chondrocyte de- and re-differentiation processes, as well as extracellular matrix assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Analysis of the Proliferation and Differentiation of Rat Articular Chondrocytes in Alginate 3D Culture

Background: While articular chondrocytes are among those appropriate candidates for cartilage regeneration, the cell dedifferentiation during monolayer culture has limited their application. Several investigations have indicated the usefulness of alginate, but the topic of proliferation and differentiation of chondrocytes in alginate culture has still remained controversial. Methods: Rat articu...

متن کامل

Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen IX.

The matrilins are a family of four noncollagenous oligomeric extracellular matrix proteins with a modular structure. Matrilins can act as adapters which bridge different macromolecular networks. We therefore investigated the effect of collagen IX deficiency on matrilin-3 integration into cartilage tissues. Mice harboring a deleted Col9a1 gene lack synthesis of a functional protein and produce c...

متن کامل

Study of Differentiation Potential of the Dedifferentiated Chondrocytes From Rat Articular Cartilage into Skeletal Cell Lineages

Purpose: Dedifferentiation of the chondrocyte from rat articular cartilage with multiple subcultures and study of the redifferentiation potential of the cells into bone, cartilage and fat cell lineages. Materials and Methods: In this experimental study, chondrocytes from rat articular cartilage were isolated and expanded through several successive subcultures during which the expression levels ...

متن کامل

Importance of Floating Chondrons in Cartilage Tissue Engineering

BACKGROUND Dedifferentiation of chondrocytes remains a major problem for cartilage tissue engineering. Chondrocytes loss differentiated phenotype in in vitro culture that is undesired for repair strategies. The chondrocyte is surrounded by a pericellular matrix (PCM), together forming the chondron. PCM has a positive effect on the maintenance of chondrocyte phenotype during culture in compar...

متن کامل

Degradation of Extracellular Matrix Molecules in Interleukin-1 Alpha Treated Bovine Nasal Cartilage

Background: This work aimed to show and compare the degradation time of some of cartilage extracellular matrix components using an in vitro model for cartilage degradation induced by interleukin-1 alpha. It is known that elucidation of molecular events under Interleukin-1 alpha induction of bovine nasal cartilage could obtain useful data to understand more about involving mechanisms for tissue ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 358 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2001